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“Biomarkers”

* Surrogate endpoints

— A measurement made on a patient before,
during and after treatment to determine
whether the treatment is working

* Predictive classifier

— A measurement made before treatment to
predict whether a particular treatment is likely
to be beneficial



Surrogate Endpoints

 |tis extremely difficult to properly validate a
biomarker as a surrogate for clinical outcome for
use in phase lll trials. It requires a series of
randomized trials with both the candidate
biomarker and clinical outcome measured

« Biomarkers for use in phase l/ll studies need not
be validated as surrogates for clinical outcome



Predictive Biomarkers

* Most cancer treatments benefit only a minority of
patients to whom they are administered

* Being able to predict which patients are likely to
benefit would

— save patients from unnecessary toxicity, and enhance
their chance of receiving a drug that helps them

— Help control medical costs



Oncology Needs Predictive Markers
not Prognostic Factors

* Most prognostic factors are not used
because they are not therapeutically
relevant

* Most prognostic factor studies use a
convenience sample of patients for whom
tissue is available. Generally the patients
are too heterogeneous to support
therapeutically relevant conclusions



 Criteria for validation of surrogate
endpoints should not be applied to
predictive biomarkers used for treatment
selection



Good Microarray Studies Have
Clear Objectives

« Class Comparison

— Find genes whose expression differs among predetermined
classes, e.g. tissue or experimental condition

« Class Prediction
— Prediction of predetermined class (e.g. treatment outcome)
using information from gene expression profile
» Class Discovery

— Discover clusters of specimens having similar expression
profiles

— Discover clusters of genes having similar expression profiles



Class Comparison and Class
Prediction

* Not clustering problems
* Supervised methods



Class Prediction

* A set of genes is not a classifier

« Testing whether analysis of independent data results in
selection of the same set of genes is not an appropriate
test of predictive accuracy of a classifier



Components of Class Prediction

* Feature (gene) selection
— Which genes will be included in the model

* Select model type

— E.g. Diagonal linear discriminant analysis,
Nearest-Neighbor, ...

 Fitting parameters (regression coefficients)

for model
— Selecting value of tuning parameters



Class Prediction # Class Comparison

« Demonstrating statistical significance of prognostic
factors is not the same as demonstrating predictive
accuracy.

« Statisticians are used to inference, not prediction

« Most statistical methods were not developed for p>>n
prediction problems



Myth

« Complex classification algorithms such as
neural networks perform better than
simpler methods for class prediction.



Simple Gene Selection

» Use genes which are univariately correlated with
outcome
— For class comparison false discovery rate is important
— For class prediction, predictive accuracy is important
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Complex Gene Selection

« Small subset of genes which together give
most accurate predictions

— Genetic algorithms

+ Little evidence that complex feature
selection is useful in microarray problems
— Failure to compare to simpler methods

— Some published complex methods for
selecting combinations of features do not
appear to have been properly evaluated



Linear Classifiers for Two
Classes

1(X) = Y wx

icF
X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for i'th feature

decision boundary I(x) > or <d



Linear Classifiers for Two Classes

Fisher linear discriminant analysis

Diagonal linear discriminant analysis (DLDA)
assumes features are uncorrelated

Compound covariate predictor (Radmacher)
and Golub’s method are similar to DLDA

Support vector machines with inner product
kernel



Other Simple Methods

Nearest neighbor classification
Nearest k-neighbors

Nearest centroid classification
Shrunken centroid classification



When p>>n

* |t is always possible to find a set of
features and a weight vector for which the
classification error on the training set is
Zero.

* Why consider more complex models?



* Artificial intelligence sells to journal
reviewers and peers who cannot
distinguish hype from substance when it
comes to microarray data analysis.

« Comparative studies generally indicate
that simpler methods work as well or
better for microarray problems because
they avoid overfitting the data.



Evaluating a Classifier

* Fit of a model to the same data used to develop
it is no evidence of prediction accuracy for
iIndependent data

— Goodness of fit is not prediction accuracy

« Demonstrating statistical significance of
prognostic factors is not the same as
demonstrating predictive accuracy

* Demonstrating stability of identification of gene
predictors is not necessary for demonstrating
predictive accuracy



Split-Sample Evaluation

* Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
* Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted

— ldeally test set data is from different centers than the
training data and assayed at a different time



Leave-one-out Cross Validation

 Omit sample 1

— Develop multivariate classifier from scratch on
training set with sample 1 omitted

— Predict class for sample 1 and record whether
prediction is correct



Leave-one-out Cross Validation

* Repeat analysis for training sets with each
single sample omitted one at a time

e e = number of misclassifications
determined by cross-validation

* Subdivide e for estimation of sensitivity
and specificity



« Cross validation is only valid if the test set is not used in
any way in the development of the model. Using the
complete set of samples to select genes violates this
assumption and invalidates cross-validation.

« With proper cross-validation, the model must be
developed from scratch for each leave-one-out training
set. This means that feature selection must be repeated
for each leave-one-out training set.

— Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the analysis of DNA microarray data. Journal
of the National Cancer Institute 95:14-18, 2003.

* The cross-validated estimate of misclassification error is
an estimate of the prediction error for model fit using
specified algorithm to full dataset



Prediction on Simulated Null Data

Generation of Gene Expression Profiles

* 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* P; ~ MVN(O, lggg0)

» Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction (discussed later)

« Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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Myth

« Split sample validation is superior to
LOOCYV or 10-fold CV for estimating
prediction error
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ABSTRACT

Muotivation: In genomic studies, thousands of lealures are
collected on relatively few samples. One of the goals of
these studies ks to bulld classfiers to predict the outcome of
future obeervations, Thers are three inherant steps to tis
procass: feelure selection, model selection, and prediction
sesessmant. With & focus on prediction assessment, We comm-
pare several methods for estimating the “rue’ prediction error
of a pradicticn modal in the presance of feature selaction,
Resulis: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estmates are sericusly biased. In these small samp-
ez, laave-ons-out (LOOCY), 10-old crass-validabon (CWV),
and the 832+ booltsirap have tha smallest bias for diago-
nal discriminant analysis, nearast naighbeor, and dassification
Irgas, LOOQCV and 10-fold GV have tha smallast bias for linear
discriminant analysis. Additionally, LOOGV, 5- and 10-fld GV,
and tha B32+ boatstrap hava tha kowes! maan squara arrar,
Tha B32+ bootstrap is quite biasad in small sampla sizes
with strong signal fo nolse ralios. Differences in perfarmancs
amaong resampling methods are reduced as the number of
specimens available increase.

Avnilability: A complate compilalion of resulls in lables and
figures |s available in Molinaro o ol (2005} R code for
simulalions and analyses is available from the authors,
Contact: Bnnette molinarofiiyele edu

1 INTRODUCTION

In genemic experiments one frequently encounters high
dimensional data and small sample sizes, Microarsays simul-
tnecusly moendior expression levels For several thonsands
of genes. Pretgomic profiling swdies using SELDI-TOF
(surface-entinced bser desorption and donization tme-of-
flight] measure siee and eharge of predeins and profein frag-
ments by mass speciroscopy, and result imoup to 15,000
imbengity levels at prespecified miass values for each spectrom.
Sample sizes m such experimenis are rppically less than LK.

1o i commesponideios sl b siessal

L iy studies observations are knowin o belong to pre-
determined classes and the task is to budd predictors or
classifiers for new observations whose class is unknown
Deciding which genes or proteomic measurements o include
in the prediction is called fowiure selecilon amd is 8 eru-
cial step in developing a class predicior, Including oo many
noisy variahles reduwces accuracy of the prediction and may
lead 1o ever-fiing of data, resulting in promising but often
non-reproducible resulis {Ranscholl, 2004).

Amnodher difficulty is model selection with numerous ¢las-
sification models available. An imporant siep in reporning
resulis is assessing the chosen model™s error rale, or gene-
ralzzability. In the absence of independent validation dat, &
commmon approach o estmatng predictve aceuracy 15 hased
o some form of resampling the ongimal doga, ep., eross-
walidation. These techmiques divade the data mto o learming
sel and o test set and range n complesity from the popular
learning-test gplit o v-fold cross-valdation, Momte-Carlo -
fold cross-valdatron, and bestsirap resampling. Few compa-
risons of stndard resampling methods have been performed
to v, aved ol of them exhibit imitations that make their
conclusions inapplicable o most genemic seitings, Barly
comparizons of resampling techniques in the leerature are
focussed on model selection a8 opposed to prediction erros
estmation |Breiman and Spector, 19462, Burman, 19890, In
two recent assessments of resampling technigues for error
estimation {Braga-Meto and Dougherty, 2004, Efron, 2004),
feature selection wis nod included as part of the resampling
procedures, causing the conclusions 1o be inappropriate for
the high-dimensional sening.

We have performed an extengive comparison of resamp-
ling methods 1o estimate prediction error using simadated
{large signal 1o noise mitol, microamay {ntermediate signal
1o noise ratio} and proteomic data (low signal 1o noise o),
encompassing increasing sample sizes with large numbers
of features. The mmpact of festure selection on the perfor-
mance of vanous cross validation owethods s highlighied.
Ihe results elucidate the "best” sesampling echnigues for

1) Dixiord Universty Press 2005



Simulated Data
40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True 078

Resubstitution .007 .016
LOOCV .092 115
10-fold CV 118 120
5-fold CV 161 127
Split sample 1-1 345 185
Split sample 2-1 205 184
632+ bootstrap 274 .084




Myth

* Huge sample sizes are needed to develop
effective predictive classifiers



Sample Size Planning
References
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Sample size as a function of effect size (log-base 2 fold-change between classes divided by standard

deviation). Two different tolerances shown, . Each class is equally represented in the population.
22000 genes on an array.
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Myth

* For analyzing right censored data to
develop predictive classifiers it is
necessary to discretize the data
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